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ABSTRACT 

The method of general perturbations in rectangular coordinates is 
the most direct  of all methods of expansion of the perturbations into 
series, because it is intimately associated with the computation of 
ephemerides. In addition, unlike the method of variation of elliptic ele- 
ments, the method of coordinates does not have the zero eccentricity as 
a singularity. Brouwer's theory of the general perturbations in the 
rectangular coordinates makes use of the variation of elements in the 
canonical form. However, if  the perturbations a r e  being developed into 
trigonometric series with purely numerical coefficients, the use of 
canonical elements is not of any advantage. This fact was  recognized 
by Davis who re-wrote Brouwer's formulas in te rms  of the standard 
elliptic elements. Davis' formula contains two te rms  of order  -1 in 
the eccentricity. The presence of these te rms  causes considerable nu- 
merical inconvenience in the case of nearly circular orbits. We sug- 
gest here use of the Eckert-Brouwer formula for the orbit correction 
as a foundation of a planetary theory. The application of this formula 
leads directly to a vectorial expression for perturbations which is free 
from the disadvantages mentioned above and is also convenient for the 
numerical computations. 

The method of iteration is suggested in computing the effects of 
higher orders.  The inclusion of the higher order te rms  is important 
not only in the planetary case, but also in the case of artificial celestial 
bodies moving in orbits in cislunar space, far away from the Earth. 
Such bodies in their motions resemble more planets or comets than 
satellites. 
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ON SOME POSSIBLE MODIFICATIONS I N  BROUWER'S THEORY OF 
THE GENERAL PERTURBATIONS IN RECTANGULAR COORDINATES 

by 
Peter Musen 

Goddard Space Flight Center 

INTRODUCTION 

In our time, the planetary perturbations can be obtained with the same high accuracy by de- 
velopment into trigonometrical s e r i e s  as they can by using step-by- s tep numerical integration. 
This is the main cause for the revival of interest toward the general perturbations. In addition, 
an expansion of perturbations into se r i e s  provides us  wi th  the possibility of a deeper insight into 
the nature of resonances in the motion of the artificial and of the natural celestial bodies, and 
this is a second reason for further pursuing the analytical or the semi-analytical methods of solu- 
tion in celestial mechanics. The artificial celestial bodies moving in orbits in cislunar space, far 
away from the Earth, resemble a planet or a comet in their  motions more than they resemble a 
satellite. In the earth-moon system, the accumulation of the long-period and of the resonance 
effect is greatly accelerated as compared to the speed of accumulation of similar effects in the 
planetary system. Thus the artificial bodies wi l l  provide us with an excellent check of our theories 
and will  stimulate their further development. Of all methods of expansion of the perturbations into 
ser ies ,  the method of general perturbations in rectangular coordinates seems to  be the most di- 
rect;  it is intimately associated with the computation of planetary ephermerides. Unlike the method 
of variation of elliptic osculating elements, this method does not have the zero eccentricity as a 
singularity. The f i rs t  modern approach to the problem can be found in the work by Brown and Shook 
(Reference 1). A further extension of this idea is due to Brouwer (Reference 2). More recently, 
works using different approaches to the problem were published by Danby (Reference 3)  and by 
Musen (References 4 and 5). 

The central idea of Brouwer's theory is one form of variation of astronomical elements. This 
form requires the computation of Langrangian and Poissonian brackets, not for the osculating ele- 
ments, but for the constant elements. Thus this method removes the influence of the variability of 
elements on the coefficients of the disturbing force components from the differential equations, and 
shifts this influence to the modified disturbing force. In the present paper, we express this modi- 
fied disturbing force in te rms  of Fad De Bruno (Reference 6)  differential operators, as w e  did in 
a planetary theory of a different form (References 4 and 5).  The perturbation effects of higher o rde i s  
a r e  transferred from the elements to  these operators. The application of the FaA De Bruno oper- 
a tors  leads to the decomposition of the disturbing force in te rms  of multipoles with the momenta 
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equal to the perturbations in the position vectors of the planets. In his work Brouwer used the 
system of canonical elements. The formula he deduced resembles the formula for the perturba- 
tions in the coordinates obtained by Brown and Shook (Reference 1). However, if  the perturbations 
are being developed into trigonometric se r ies  with purely numerical coefficients, then the use of 
canonical elements is not of any advantage. Evidently, this fact was recognized by Davis (Refer- 
ence 7), who transformed Brouwer's formula and re-wrote it in t e r m s  of the standard elliptic 
elements. Davis' formula contains, however, two t e rms  of order  -1 in the eccentricity. The 
presence of such te rms  causes considerable numerical inconvenience in the case of nearly cir- 
cular orbits. We suggest here a modification of Brouwer's formula which is free from this disad- 
vantage. In the classical planetary theories the relative positions of the orbital planes a r e  taken 
into account by use of trigonometrical formulas. Such a system is definitely going out of fashion 
because it causes asymmetry in the development of higher order  perturbations. Programming for 
digital computers very strongly favors the use of vectors and matrices. For all of these reasons, 
we discard the use of the canonical elements even as an intermediate step, and we suggest, in- 
stead, the use of the Eckert-Brouwer formula for the orbit correction as a foundation of a plane- 
tary theory (Reference 8). This formula in fact represents a solution of the variational equation 
of the two-body problem in te rms  of position and velocity vectors and also in te rms  of Gibbsian 
vectors and leads directly to a vectorial expression for perturbations which is both free from the 
disadvantages mentioned above and is convenient for numerical computations. 

BASIC DIFFERENTIAL EQUATIONS 

Here the case of two planets influencing each other is considered. Generalization to the case 
of a planetary system does not present any theoretical difficulty. The differential equation of the 
disturbed motion of the planet with mass m, as disturbed by the planet with the mass m ' ,  can be 
written in the form 

where 

,u2 = k 2 ( 1  + m). 

By taking into account that 

2 

I 



and by making use of the operators 

w e  can rewrite Equation 1 as 

By taking the identity 

into account we deduce that 

where 

We make use of Brouwer's idea and apply the method of variation of constants to solve Equation 7, 
but avoid the use of canonical variables. The solution of Equation 2 for the undisturbed motion 
has the form 

where c i  a r e  the constant elements. The general solution of the variational equation 

has the form 
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where Bcj are the arbi t rary constants of integration. The method of variation of constants leads 
to  the equations 

a, 
J acj  6c.  - ,  

j = l  

It follows from Equations 11 and 12 that 

d 6 c .  ar 
[ci, c j  I 1 = - . F ,  

dt aci 
j = 1  

where k i ,  c j ]  are the Lagrangian brackets 

ar av  a r  aV 
J aci ac j  aci aci 

[ C i '  c.1 = - . - - - e - .  

By solving Equation 13 with respect to d6cj/dt we obtain 

dbc, ar 
- =  2 (ci, c j )  - F. 
dt acj 

, = 1  

At first glance, Equations 13 and 15 have the same form as for  osculating elements. However, 
the substantial difference between the standard method of variation of the osculating elements and 
Brouwer's idea is that the Lagrangian brackets in Equation 13 and the Poissonian brackets in 
Equation 15 a r e  formed with the constant elements and not with the osculating elements. The 
sums c i  t 6ci  a r e  not the osculating elements either. This means that the influence of the per- 
turbations is removed from the elements and is transferred to the operators (Equations 3 through 
5). This transfer produces considerable simplification in the computational procedure, as com- 
pared to the procedure for determining the general perturbations in the osculating elements. 
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From Equations 9 and 15 we obtain 

where (bci) are the constants of integration. In order to shorten the number of trigonometric 
series we use the Hansen and Hill device. We distinguish between the time t under the integrals in 
Equation 16 and between the time contained in the undisturbed position vector r( t ) and in its deri- 
vatives which stand outside the integrals. We designate temporarily by T the time associated with 
the undisturbed motion and w r i t e  5 for r( T ) .  The mean anomaly 117 + L o  associated with 5 is 
designated by 2 .  We consider T and F as constants until the integration is performed. After the 
integration, w e  replace 7 by t again. Then taking 

into account we can write Equation 16 in a symmetrical form 

where r is a dyadic defined by 

In a similar manner we obtain the perturbations in the velocity by, 

On the basis of the principle expressed by Equation 15 each differential equation for  the per- 
turbations of an osculating element can be transformed into the equation of our theory simply by 
replacing 
F is defined by Equation 8. If the element is a vector C ,  then Vc n should be replaced by Vc r . F. 
In his previous work (Reference 9)  the author has obtained the following equations for  the osculating 

the derivative of the disturbing function 0, by ar /ac i  . F .  The "disturbing force" 
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P, Q and e: 

From 

we have 

r = c< P + ri Q ,  .: = c1 = a ( c o s  1 1  - e ) ,  and 7 )  = s1 = a v‘= s i n  u 

pp r 1 cl, D g r : I s  1 ’  

/ 
Op r . F - c1 F, and Da r . F . s 1  F, 

and the equations of our theory analogous to Equations 19 through 2 1  take the form: 

The coefficients in these equations are formed by using the constant elements. Equations 22 and 
23 can be replaced by the system 

b P  - a y *  P 

b Q -  t .Yr  Q ,  

(25) 
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and 

A system of approximate equations resembling Equations 25 through 27 appears in Stromgren's 
theory of special perturbations (Reference 10). In our theory Equations 22 through 24 were exact. 
The theory presented in this paper can also be considered as an extension and improvement of 
Stromgren's results. 

The classical equations 

have as their analogues in our theory the equations: 

Each formula for the differential correction of the orbital elements is, in fact, a solution of the 
variational equation (7a), and each such solution can serve  as a foundation of a perturbation theory. 
However, the orbit correction formula by Eckert and Brouwer (Reference 8), 

where 

d r  3 a r  
d a  2 O 34 

a - - r - - n ( t  - t ) - ,  
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and 

is associated in a most intimate way with the determination of the general perturbations in r and V. 
Direct application of this formula, by-passing the use of the canonical elements, leads immediately 
to a form of r which is in agreement with the general spir i t  of this theory. 

Substituting Equations 24 and 27 through 29 into Equation 30 we obtain: 

The expressions 

contain the eccentricity as a factor which will be canceled with the eccentricity in the denomina- 
tor.  Our form of r makes it evident that e = 0 is not a singularity. The use of the standard el- 
liptic elements and of Gibbsian vectors leads to a numerical theory which is valid also for nearly 
circular orbits. If the numerical theory of the general perturbations were to be developed for the 
osculating elliptic elements directly, then the eccentricity would appear in the denominator in 
several  places, thus causing considerable difficulty in the case of nearly circular orbits. 

Substituting 

r = c1 P + s1 Q ,  c1 ~ a ( c o s  u - e ) ,  s1 = a v i  - e2 s i n  (1 , 

a2 . lf = c 2  P + s 2  Q ,  c2 = - -  s i n  11, and s2  = 
ax 

into Equation 35 we obtain the following decomposition of r: 

+"' m c o s  u 
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where 

~.  cos a u - e )  s i n  u, 
V I  - e2 

a 
,- 

LI - e + - 3 I\ ( t  - t ) a s i n  t i ]  , and 
2 O r  

The developinents of c ,  , s I into the trigonometric s e r i e s  in with numerical coefficients can 
be obtained by using either the analytical methods or numerical Fourier analysis. The ser ies  for  
c , ,  S ,  are obtained from the corresponding se r i e s  for C ,  , s , by replacing .P by i . After  we ob- 
tained the developments of C ,  , s,, C , ,  E,, then the developments of I- ,  , into a double Fourier series 
with the arguments 4 and l can be performed on an electronic computer without any great difficulty. 

- 

Setting 

P . F . F , ,  Q . F = F , ,  and R . F = F 3 .  
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d W, at = $ 1  F, + r12 F2 , 

- dW2 = rZ1 F, I-,, F, , and 
d t  

dW3 - = r,, F, , 
d t  

we deduce 

where 

and the symbols 

now designate the constants of integration. The expressions for the partial derivatives a r e  given 
by Equations 31, 32, and 36. 

DECOMPOSITION OF THE DISTURBING FORCE 

The system Equations 38 through 41  can be solved either by developing br into a power ser ies  
in the masses  m and m' or by the method of iteration. If we choose the f i rs t  way we set: 

b p  = b ,  p t b 2  p t b ,  P t and 

b , p  = b k r '  - b k r ,  
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where 6, r ,  6 ,  r '  and 6, p a r e  the kth order  in m and m' . We have 

e x p ( 6 r . V )  = T o  + T ,  + T ,  + T 3  + . . . . ,  

where T,,  T,' , and T;' (k = 0, 1, 2, . . .) a r e  Fag De Bruno differential operators. By setting 

6, = 6, r - D ,  

we have 

By replacing 6, in Equation 42  by 

6' = 6, r' . V', 

or  by 

6" = 6, s p  . u t  I 

we obtain the operators T,' and T:, respectively. 

In order to obtain the expansions of the operators 

T,, T l ,  TL, D ,  D ' ,  and D" 

in powers of perturbations one can use formulas for the potentials of multipoles. By setting 

p = r - a  

and designating the multipoles moments by a, ,  a * ,  a,, . . . , and the del-operator with respect to  
r by 8, we have: 
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a, . D a, . U -  1 3  = t - p - a ,  p - a ,  - - a  1 
1 .  

P5 P3 

i43) 

(p . az p . a3 a, . a4 t p . a3 p . a, a, . a4 
105 1 5  

t __ p ' a ,  p '  a, p '  a3 p '  a4 -- 
P9 P7 

3 
t- (a, . a4 a,. a3 t a,. a4 a3 * a, t a 3 .  a4 a, . a, ), 

P5 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

They remain valid if one of the moments is replaced by a matrix. Equations 38 through 41 re- 
quire a knowledge of the components of F in the directions of P , Q  and R. In order to obtain these 
components we have to replace one of the moments by P, Q or R respectively. 

In a planetary theory we have to replace 

ak by bk r,  bk r ' ,  and b k  p 

and 

'V can mean e i t h e r  v or V '  . 

The application of the relations 43 to the expansion of Equation 8 was fully discussed in the 
author's previous work and therefore the details can be omitted in the present article. On occa- 
sion it might be more convenient to use the process of iteration instead of expanding b r  and hr 

in powers of masses. Replacing one of the moments in Equation 43 by the idemfactor and setting 
the remaining moments equal to . I r ,  we have 
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-15 [ r  r *  S r  Sr2 t (r- S r ) 2  b r l ,  
2 r7 

. . . . . . . . . . . . . . . . . . .  

From the last equations and from Equation 3 we deduce that 

where 

3 15 

r5 2r7  
B = + - a  -- a ' +  . . . .  

a = r -  Sr, and p2 = S r 2 .  

In an analogous way we deduce that 

1 
P 

D" - = A" p + 3" S p ,  



The expansions of A and B into double ser ies  in a and p2 converge very fast. The negative powers 
of r ,  r ‘  and p appearing in the coefficients can be expanded into double Fourier ser ies ,  with the 
arguments 4 and 4 ‘ ,  by means of harmonic analysis. By making use of Equations 44, 47 and 5 0  
we can write Equation 8 in a compact form, 

which is convenient for computing the perturbations by iteration. Decomposing Equation 53 along 
P ,  Q and R we obtain the expressions for F , ,  FZ, F3 to be used in association with Equations 38 
through 41. In the author’s earlier theories (References 4 and 5)  6r w a s  decomposed along r ,  v 

and R or  along r ,  R X  r, R .  The same form of F (Equation 53) can also be used conveniently in these 
earlier theories i f  the method of iteration is preferred. 

CONCLUSION 

The results given in  this art icle represent a modification and extension of the results by 
Brouwer, Davis and Stromgren. Equation 8, the basic integral equation, which determines the per- 
turbation 6 r ,  can be solved by means of iteration with the help of Equations 35 and 44 through 53. 
The solution by expanding the perturbations into power ser ies  with respect to the masses can also 
be achieved using the system of operators given in the author’s previous work. We suggest the 
application of the double harmonic analysis to expand the negative powers of the mutual distance. 
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Appendix 

Notations 

k - the Gaussian constant 

m - the mass of the disturbed planet; the mass of the Sun is one 

p2 = k2(1 t m )  

m' - the mass of the disturbing planet 

r - the undisturbed position vector of the planet m 

r 11'1 

u - the undisturbed eccentric anomaly of m 

v - the undisturbed velocity of m 

P, Q, R - the Gibbsian vectors of m 

a - the undisturbed semi-major axis of m 

e - the undisturbed eccentricity of m 

n = pa-3'2 - the undisturbed anomalistic mean motion of m 

4, - the mean anomaly a t  the epoch of m 

4 = n t t 4, - the undisturbed mean anomaly of m 

r' - the undisturbed position vector of m' 

r' = I r' I 
r + s r  - the disturbed position vector of m 

skr - the perturbations of the k t h  order  in the position vector of m 

8r - the total perturbations in the position vector of in 

6~ = dS r / d t  - the perturbations in the velocity of m 

r' .+ Sr' - the disturbed (actual) position vector of m' 

S , r '  - the perturbations of the k t h  order in the position vector of m' 

6 r '  - the total perturbations in the position vector of m' 
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I 

p =  r ' - r  

p = I P I  

Sp = S r '  - Fr 

I - the iden factor 

V - the del-operator with respect to r 

0' - the del-operator with respect to r' 

D" = 0' exp Sp .D' 

D' = 0' exp 6r' * V' 

D = V e x p  6 r - V  

vp - the del-operator with respect to P 

DQ - the del-operator with respect to Q 

18 NASA-Langley, 1966 
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